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Abstract—The typical ping control objective for a multistatic
network is to optimize a sonar performance metric within a
search area over the mission scenario time horizon subject to
available ping energy at sources. Assuming sonar performance
models and near real-time multistatic target trackers are avail-
able, sonar performance metric predictions for near-future time
window can be obtained. However, for Anti-Submarine Warfare
applications, it is not realistic to accurately predict performance
metrics involving an unknown number of evasive targets over
a long scenario time horizon. Therefore, effective and efficient
ping control methods must consider effective strategies to obtain
desired performance over the spectrum of operational objectives
and time frames.

In this paper, we develop four integer-linear goal programming
models to provide intelligent ping control decisions for various
operational modes that depend on remaining ping energy and
remaining scenario time. We incorporate the multiple objectives
of: maximizing the sonar performance metric, judicious use
of energy-limited sources and maintaining a certain level of
ping activity. We show that the constraint matrix of each
relaxed linear model possesses the total unimodularity property,
guaranteeing optimal integer ping control solutions. Therefore,
computationally efficient linear programming methods can be
used in the implementation of these models. We simulate multiple
operational scenarios and demonstrate the properties of the
resulting ping strategies in terms of the performance metric and
individual source and network lifetime. Results are compared to
the baseline ping strategy, which considers the sonar performance
metric alone.

Keywords– Ping control, sensor management, ping management,
sonar optimization, multistatic tracking.

I. INTRODUCTION

Multistatic active acoustic networks provide Anti-
Submarine Warfare (ASW) capability to detect, localize, and
track threat targets through the expanded geometric diversity
of a distributed field of sources and receivers [1]. However,
given the variabilities in acoustic environmental conditions,
sensor performance and threat target behavior, such networks
cannot exploit their full potential without management and
control methods. Control methods may be applied to the ping
scheduling task to obtain improved detection, localization and
tracking performance.

The proper implementation of a ping control model within a
multistatic network will depend on the current mission “mode
of operation”. In the “Target Search” mode of operation, the
objective is to quickly detect any targets present within the
surveillance area and initiate tracking using these detections.
If detections are not obtained (when performance predictions
indicate targets should be detectable), there is more confidence
that the area is effectively cleared or sanitized of target threats.
In the “Track-Holding” mode of operation, the objective is
to maintain high-quality track estimates for those targets that
have already been detected. In the “Search and Hold” mode
of operation, the objective is to perform the previous two
modes in parallel: maintain tracking on detected targets while
continuing to search for undetected targets. It may be that
even within the operational scenario, the mission mode may
change from one to another. This paper describes a dynamic
ping control decision methodology that is applicable over this
wide range of mission modes and operational scenarios, while
also considering energy constraints of the system’s acoustic
sources.

Ping control algorithms require a metric for the predicted
sonar performance obtained by pinging a given source at a
particular time. A number of performance metrics may be
selected for this purpose. Among them are: average detection
probability during search mode with confirmed detections [2],
probability of target presence during search mode without
confirmed detections [3], probability of target presence during
search and/or track-hold mode with confirmed detections [4],
and ASW residual risk metric for area clearance [5]. Predic-
tions are of most value to the control process within a near-
future time window. Given the prohibitive task of accurately
and efficiently forecasting sonar performance metrics for a far-
future time window, in our case we assume the probability
of target presence is uniform over the search area and use a
constant, nominal sonar performance metric for each source as
given by a sonar performance model. Although the accuracy
of predicted performance metrics is important, in this paper
we focus on obtaining the ping decision assuming appropriate
sonar performance metrics are given.
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Previously published work on ping control methods for
multistatic active acoustic networks include [2], [6], and [7].
In [6], a greedy approach is used to select a ping source
which optimizes one-step prediction of the expected detection
performance metric during both search and track-hold modes.
In [7], another greedy approach is presented which selects
not only a ping source but also a waveform type and fine-
tuned ping timing adjustments to obtain high-strength specular
echoes. It also optimizes the one-step prediction of the de-
tection performance metric, but only for the track-hold mode.
However, the greedy approaches using a one-step performance
metric prediction do not consider the remaining ping energy at
each source. This may result in over-usage of certain sources
(risking too early expenditure to complete the mission) or ping
waste (pinging when no/little benefit is expected). In [2], an
approximate dynamic programming approach with sampling-
based policy rollout implementation is used to address the
energy constraint at sources (during search mode) with the
goal of extending network lifetime. The approach is to obtain
an optimized ping sequence solution (including quiescent
periods, as needed) over the entire scenario time horizon. Such
an approach may extend the network lifetime but optimizing
based only on the detection performance metric may result
in early expiration of certain sources. Further, policy rollout
implementation to generate performance metric predictions
over a long time horizon is computationally expensive and the
suitable prediction accuracy for future performance metrics is
hard to achieve due to unknown target behaviors.

In this paper we develop four integer-linear goal program-
ming models to address the wide spectrum of operational
modes previously mentioned. Each of these will depend on the
remaining time in the operational scenario and the remaining
ping energy at each source. We assume a capability exists
to estimate performance metrics for each source within the
near-future time frame and a constant, nominal performance
metric is used for each source within the far-future time frame.
The optimization models will consider the following multiple
objectives: maximizing the performance metric, balancing ping
source usage, and maintaining a certain level of ping activity.

Further, we show that these integer-linear models can be
solved with highly efficient linear programming methods and
that the relaxed linear models are guaranteed to provide integer
optimal solutions. We simulate multiple operational scenarios
and demonstrate the properties of the resulting ping strategies
in terms of the sonar performance metric and individual source
and network lifetime. Results are compared to the baseline
ping strategy, which considers the sonar performance metric
alone. This paper proceeds as follows. In Section II, we
describe the goal programming approach as an optimization
modeling method for various operational modes. We also
discuss the ping control framework within which such opti-
mization models would operate. In Section III, we describe the
detailed formulations of four integer-linear goal programming
models. In Section IV, we prove the integer solution property
of each linear relaxation model, which allows computationally
efficient implementation. Section V presents simulation results

that demonstrate the properties of ping solutions generated by
each of the optimization models. Conclusions and future work
are provided in Section VI.

II. OPTIMIZATION MODELING APPROACH

In previous work on ping control optimization, it has been
assumed that ping optimization can be encompassed within
a single overriding objective, such as maximizing detection
probability. However, this assumption is not realistic, espe-
cially in the ASW applications where forecasting detection
performance metrics over the scenario time horizon may be
prohibitive. Ping control optimization should also focus on
other operational objectives, such as maintaining area coverage
capability over the scenario time horizon, extending network
lifetime, preventing long ping gaps in addition to maximizing
the detection metric. The goal programming approach provides
a way of striving toward multiple objectives simultaneously
[8]. We develop four goal programming models, each one cor-
responding to different operational modes and energy supply
levels. In the following, we first provide a brief description
of a general closed-loop ping control framework in which the
optimization models serve as main components.

The ping control framework can be summarized as fol-
lows: given the scenario (mission mode, remaining scenario
time, and remaining energy) and the assumed performance
metrics, a user or automated rule-set determines which ping
optimization model is to be solved. It provides a solution for
the ping source sequence for discretized ping times over the
remaining scenario time. The first k (less than or equal to the
scenario time window) ping sources are selected and pings
are generated accordingly. Detections from the k pings are
processed by a multistatic target tracker and the performance
metric predictions for the remaining time window are then
updated. At this point the optimization procedure iterates. An
optimization model is then selected based on the updated
scenario and solved to generate a new ping sequence. This
process is repeated until the end of the operational scenario
time window. The faster the performance metric update rate
(i.e. smaller k), the more accurate the performance metric
predictions can be made, and thus a more effective and
efficient ping solution can be achieved.

We focus our discussion on four optimization models to be
used within the framework. Fig. 1 shows the four optimization
models. The Baseline model (P1) is activated for tracking
particular target(s) over a relatively short time window with the
overriding objective of maximizing performance to maintain
continuous track-hold on targets already detected. Unlimited
or abundant energy is assumed to be available in this case.
The other models, (P2), (P3), and (P4), may be activated for
target search and/or search-hold modes.

The Energy Reservation model (P2) is activated when the
ping energy is limited at certain sources but enough total ping
energy is available to cover the scenario time window. The op-
timization objectives for (P2) are maximizing the performance
metric over the scenario time window and preventing the
over usage of the sources with limited energy. This prevents
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Figure 1. Goal programming optimization models that depend on remaining
ping energy and operational scenarios.

premature expiration of those sources, thereby maintaining
area coverage over the scenario time window. To include
the latter objective, we divide the total scenario window into
subintervals and allocate ping energy from each source to
each subinterval. A penalty is applied when there is over
usage of ping energy by sources that have limited energy. The
allocation of a source’s remaining ping energy is distributed
approximately uniformly over the subintervals.

The Ping Activity model (P3) is activated when the total
ping energy is very limited with respect to planned scenario
time window. An example of this is the case of equipment
failure, and the additional optimization objective is to extend
the network lifetime while maintaining a certain minimum
ping activity level (i.e., no long ping gaps) until all ping
energy is exhausted. To prevent long gaps between successive
pings, we introduce an m-of-n ping activity rule, which is to
generate at least m pings over the n discretized ping times.
The penalty for violating the m-of-n rule is then included in
the total objective function of (P3).

The Complete model (P4) may be activated when the ping
energy is limited at certain sources as in (P2), or when there
is not enough total ping energy for the planned operating time
window as in (P3). Here, the goal is to strategically distribute
null pings over the time window to last the duration of the sce-
nario, without significantly sacrificing detection performance.
In this model, both the energy reservation objective of (P2) and
the ping activity objective of (P3) are included, in addition to
the sonar performance objective.

III. FOUR INTEGER-LINEAR OPTIMIZATION MODELS

In this section, we provide mathematical descriptions for
four integer-linear goal programming models, which incorpo-
rate the additional operational goals described in Section II.
We start by listing the notation that is used in the rest of the
paper. We denote

Index sets and parameters:

NS = number of sources,
J = {1, 2, · · · , NS},
T = number of discretized ping times in the remaining

scenario window,
P = {1, 2, · · · , T},

N∆ = number of subintervals in the remaining scenario
window,

Q = {1, 2, · · · , N∆},
∆q = set of consecutive ping times in P in subinterval q,

q ∈ Q,
ej = remaining number of pings at source j, j ∈ J,

∆ejq = allocated number ping energy for source j in

subinterval q, j ∈ J, q ∈ Q,
m = lower bound of number of pings in m-of-n ping

activity rule,
n = number of consecutive ping times in m-of-n ping

activity rule,
Nδ = number of running time intervals over the

remaining scenario time window,
R = {1, 2, · · · , Nδ},
δr = set of consecutive ping times in P in running time

interval r, r ∈ R,

Performance parameters:

cjp = performance metric of source j at ping time p,

j ∈ J, p ∈ P,
ajq = penalty coefficient for over utilization of source j

in subinterval q, j ∈ J, q ∈ Q,
br = penalty coefficient for under pinging in running

time interval r, r ∈ R,

Decision variables:

xjp = binary ping decision variable for source j at ping

time p, j ∈ J, p ∈ P,
xjp is 1 if allocated, 0 otherwise,

yjq = over utilization integer decision variable for source

j in subinterval q, j ∈ J, q ∈ Q,
zr = under pinging integer decision variable in running

time interval r, r ∈ R.
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We illustrate the notations of time intervals with a small
example in Fig. 2. In this example, the scenario time window
is discretized into 12 ping times (T = 12). The scenario time
window is divided into two subintervals (N∆ = 2), with ∆1

consisting of ping times {1, 2, · · · , 7} and ∆2 of ping times
{8, 9, · · · , 12}. We define a running time interval of length 4
(n = 4, Nδ = T −n+1 = 9), with δr consisting of ping times
{r, r + 1, r + 2, r + 3} for r = 1, 2, · · · , Nδ .

Figure 2. Discretization of remaining scenario time window.

The complete problem formulation (P4) is given by:

max
∑
p∈P

∑
j∈J

cjpx
j
p −

∑
q∈Q

∑
j∈J

ajqy
j
q −

∑
r∈R

brzr (1)

sub. to
∑
p∈P

xjp ≤ ej , for all j ∈ J, (2)∑
j∈J

xjp ≤ 1, for all p ∈ P , (3)∑
p∈∆q

xjp − yjq ≤ ∆ejq, for all j ∈ J, q ∈ Q, (4)

∑
p∈δr

∑
j∈J

xjp + zr ≥ m, for all r ∈ R, (5)

xjp is binary, for all j ∈ J, p ∈ P , (6)

yjq is nonnegative integer, for all j ∈ J, q ∈ Q, (7)

zr is nonnegative integer, for all r ∈ R. (8)

The objective function (1) includes the total sonar perfor-
mance metric summing responses over all ping sources and
all ping times in the scenario time window; the total penalty
metrics summing over-utilization of the alloted pings over
all sources and all subintervals; and the total penalty metrics
summing under-pinging according to the m-of-n activity rule
over all running intervals. The set of constraints include:
• Constraint (2): For each source, total ping usage over the

scenario window must not exceed available energy.
• Constraint (3): At each ping time, at most one source is

selected.
• Constraint (4): For each source and for each subinterval,

the number of allocated pings over the available pings
is accounted for, so that each unit of over-usage can be
penalized in the objective function.

• Constraint (5): For each running time interval, the number
of allocated pings below a desired number of pings is
accounted for, so that each unit of under-usage can be
penalized in the objective function.

• Constraints (6) – (8): Decision variables must be integers.
The four optimization models correspond to four subprob-

lems of the complete problem; the inclusion of certain terms in
the objective and constraint functions depends on the mission
mode and the remaining pings as described in Section II. The
four subproblems are:
• Baseline model (P1): The objective function includes the

first term of (1), and the constraint functions are given
by (2), (3), and (6).

• Energy reservation model (P2): The objective function
includes the first two terms of (1), and the constraint
functions are given by (2), (3), (4), (6) and (7).

• Ping activity model (P3): The objective function includes
the first and last terms of (1), and the constraint functions
are given by (2), (3), (5), (6) and (8).

• Complete model (P4): It is equivalent to the complete
problem (1) – (8).

The optimization problems given above include the con-
straints that each decision variable (xjp, y

j
q , zr) must be integer.

We will consider a linear programming relaxation to these
problems where the integrality constraints are dropped. The
resulting linear programs can be solved efficiently by the
simplex method or other polynomial complexity methods.
In the next section, we show that optimal solutions to the
relaxed problems are guaranteed to be integer solutions, and
therefore are also optimal solutions to the corresponding
integer-constrained problems.

IV. INTEGER SOLUTION PROPERTY

We show each of the four integer-linear models described
in Section III can be solved as a relaxed linear model and the
relaxed model satisfies the integer solution property. We apply
the following well-known result from Operations Research that
provides the conditions for integer solutions even if integer
constraints are relaxed.

Theorem (Hoffman-Kruskal Theorem) (cf. [10]): Let A be
an m by n integral matrix. Then the polyhedron defined by
Ax ≤ b, x ≥ 0 is integral for every integral vector b ∈ Rm if
and only if A is totally unimodular.

Proof: See [10], pp. 221.
Definition: A matrix is defined as “totally unimodular” if

all of its square submatrices have determinant 0, 1, or −1.
Three specially structured matrices with the totally unimod-

ular (TU) property are of interest. These special matrices are:
• node-edge incidence matrix of a bipartite undirected

network,
• node-edge incidence matrix of a directed network,
• binary matrix with consecutive-ones property, i.e., in each

row the 1’s appear consecutively (This matrix is also
referred to as an interval matrix).

The TU property for these special matrices is described in [11]
and [12].

A. Baseline Model (P1)

We consider a linear optimization model with constraints (2)
and (3). For ease of presentation, we consider the following
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example with 2 sources (NS = 2) and 5 ping times (T = 5).
The corresponding constraint matrix, A1, of the equivalent
linear model is given as:

A1 =

[
A
B

]
,

where

A =

[
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1

]
,

B =


1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1

 .
In general, A and B have the dimensions of NS × (NS × T )
and T × (NS × T ) respectively.

We see that A1 represents a node-edge incidence matrix of
a bipartite undirected network (Fig. 3) and thus A1 is totally
unimodular [11]. In Fig. 3, an edge (s, p) corresponds to a
column in A1 which has exactly two 1s; one 1 in each of the
rows corresponding to nodes s and p.

The column vector b1 resulting from the column-wise
concatenation of the right-hand-sides of (2) and (3) is integral.
Therefore, from the Hoffman-Kruskal Theorem, the baseline
model (P1) satisfies the integer solution property.

Figure 3. Bipartite network representing the constraint matrix A1 for an
example with two sources {s1, s2} and five ping times {p1,p2,p3,p4, p5}.
Edge (i, j) represents an edge incident to nodes si and pj .

B. Energy Reservation Model (P2)

Now consider the linear optimization model with constraints
(2), (3) and (4). We show that the constraint matrix of (P2) is
equivalent to a network matrix. We first replace the inequality
constraints (2), (3) and (4) by a system of equality constraints:∑

p∈P
xjp + uj = ej , for all j ∈ J, (9)

∑
j∈J

xjp + vp = 1, for all p ∈ P , (10)∑
p∈∆a

xjp − yjp + wjq = ∆ejq, for all j ∈ J , p ∈ P , (11)

where uj , vp and wjq are non-negative slack variables. In order
to view the resulting constraint matrix as a balanced network
matrix, we include two additional dummy constraints without
affecting the solution to the original optimization model:∑

j∈J
uj = max{0, T −

∑
j∈J

ej}, (12)∑
p∈P

vp = max{0,
∑
j∈J

ej − T}. (13)

Again, we utilize the example with 2 sources (NS = 2)
and 5 ping times (T = 5) for the ease of presentation. In this
example, we subdivide the scenario window into 2 subintervals
(N∆ = 2) with ∆1 consisting of ping times {1, 2, 3} and ∆2

of ping times {4, 5}. The corresponding constraint matrix, A2,
for the new equivalent linear model is given by:

A2 =


A 0 I2 0 0
B 0 0 I5 0
C −I4 0 0 I4
0 0 a 0 0
0 0 0 b 0

 ,
where

C =


1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0
0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1

 ,
A and B are as previously defined, a and b are row vectors of
1s of size 2 and 5 respectively, the 0s in A2 are zero matrices
of appropriate dimensions, and In corresponds to an identity
matrix of size n. In general, C, a and b have the dimensions
of (NS ×N∆)× (NS × T ), 1×NS , and 1× T respectively.

We see that the rows of A and C are linearly dependent.
Using elementary row operations, we can rewrite A2 in an
alternative equivalent form, A′2 as:

A′2 =


0 D I2 0 −D
−B 0 0 −I5 0
C −I4 0 0 I4
0 0 −a 0 0
0 0 0 b 0

 ,
where

D =

[
1 1 0 0
0 0 1 1

]
.

Each column of A′2 has exactly one 1 and exactly one −1,
and the rest of the entries are zeros. We recognize that A′2 is
a node-edge incidence matrix of a directed network (Fig. 4)
and represents the constraint matrix of the minimum cost flow
problem, which is totally unimodular [11].

The column vector b2 resulting from the column-wise
concatenation of the right-hand-sides of (9) – (13) is integral.
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The elementary row operations result in an integral column
vector b′2. Therefore, from the Hoffman-Kruskal Theorem, the
energy reservation model (P2) satisfies the integer solution
property.

Figure 4. Network representing the constraint matrix A′
2. In this example,

there are three sources (including a dummy source ds) {s1, s2, ds}, six ping
times (including a dummy ping time dp) {p1, p2, p3, p4, p5, dp} and four
source-subinterval pairs {s1∆1, s1∆2, s2∆1, s2∆2}.

We have shown that constraint matrices of (P1) and (P2) can
be represented as networks, and therefore (P1) and (P2) can be
solved very efficiently using a specialized network algorithm,
such as the network simplex method.

C. Ping Activity Model (P3)

We consider the linear optimization model with constraints
(2), (3) and (5). Again, we use the example with 2 sources
(NS = 2) and 5 ping times (T = 5) and set n = 3 (Nδ =
T − n+ 1 = 3). The constraint matrix, A3, is given by

A3 =

 A 0
B 0
−E −I3

 ,
where

E =

 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 1

 ,
and A and B are as defined previously. In general, E has the
dimensions of Nδ × (NS × T ).

To show the TU property of the constraint matrix, we
first convert the inequality constraints into equality constraints
using slack variables. The resulting constraint matrix, A′3, is
then transformed into an alternative equivalent form using el-
ementary row operations, which do not change the solution of
the linear system. Adding slack variables, equality constraint
matrix, A′3, has the following form:

A′3 =

 A 0 I2 0 0
B 0 0 I5 0
−E −I3 0 0 I3

 .

The pattern of E, which consists of rows of consecutive ones
representing the running time intervals, is different from the
network pattern shown in (P1) and (P2).

We perform elementary row operations on A′3. The rows of
E and B are linearly dependent and the resulting transformed
matrix A′′3 is given by:

A′′3 =

 A 0 I2 0 0
B 0 0 I5 0
0 −I3 0 F I3

 ,
where

F =

 1 1 1 0 0
0 1 1 1 0
0 0 1 1 1

 .
The consecutive-ones property of E is preserved in F , and
therefore F is totally unimodular [12]. Since [A B]T and
F are totally unimodular, we can show that A′′3 is totally
unimodular. We first show that the following matrix

G =

 A 0
B I
0 F


is totally unimodular. The proof is included in the appendix in
the form of a lemma. Since G is TU, it can be easily shown
using a similar argument in the lemma that the matrix resulting
from concatenating G row-wise by [0 0 I]T , [0 0 − I]T or
[I 0 0]T is still TU. Therefore, it is concluded that A′′3 is totally
unimodular.

The column vector b′′3 resulting from the column-wise
concatenation of the right-hand-sides of equality constraints is
integral. Therefore, from the Hoffman-Kruskal Theorem, the
ping activity model (P3) satisfies the integer solution property.

D. Complete Model (P4)

Using similar reasoning as in (P3), it can be shown that
(P4) satisfies the integer solution property.

V. SIMULATION RESULTS

In this section, we demonstrate the properties of ping control
solutions of optimization models (P1) to (P4). First, we need
sonar performance metric predictions cjp for source j ∈ J and
ping time p ∈ P . In the following examples, we specify four
sources (NS = 4) and a remaining scenario time window of
length 60 (T = 60). We generate random numbers between 0
and 1 to represent the detection performance metric predictions
for the four sources for each of the first five ping times.
Constant random numbers are specified for the remaining ping
times between 6 and 60 to represent the detection performance
metrics of four sources with uniform target distribution in
the search area. Fig. 5 shows simulated performance metric
predictions for four sources over the scenario time window.

Depending on the specified remaining pings for each source
and other user-input parameters (criteria for energy limited or
very limited scenario, criteria for ∆q and δr, penalty costs,
etc.), the algorithm then transforms the problem into one
of the linear programming models {(P1),· · · ,(P4)} and uses
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Figure 5. Simulated detection performance metric predictions for four sources
over the scenario time window.

lp solve [13] to obtain the ping control solutions. We generate
three examples, examples (a), (b) and (c), corresponding to
operational conditions for (P2), (P3), and (P4). We also solve
(P1) for each of the operational conditions and use its solution
as a baseline comparison to the solution of other models.

Example (a) represents an operational condition for (P2)
with limited pings at some sources but enough total number of
pings for the scenario window. The remaining pings at sources
1 to 4 (ej , j = 1, 2, 3, 4) are 20, 7, 23, 10 respectively. The
scenario time window of 60 ping times (T = 60) is divided
into 5 subintervals (N∆ = 5) with each subinterval consisting
of 12 ping times. The penalty metric for over utilization, ajq ,
is set to 0.3 for sources 1 and 3 and 0.8 for sources 2 and
4 for each subinterval ∆q, q = 1, 2, · · · , 5. The models (P1)
and (P2) are solved and the ping control results are shown
in Fig. 6. For the first 5 ping times, the sum of the detection
performance metrics of the (P1) solution is greater than that of
the (P2) solution by 0.15. For the whole scenario window of
length 60, the difference in the sums of detection performance
metrics is only 0.05. Considering detection performance metric
alone, the (P1) ping control strategy exhausts ping energy of
sources 1 and 2 before the middle of the planned scenario
window. With the inclusion of energy reservation objective, the
(P2) ping control strategy reserves some of the ping energy of
sources 1 and 2 for usage near the end of the scenario window.

Example (b) represents an operational condition for (P3)
with very limited total number of pings. The remaining pings
at sources 1 to 4 are 10, 1, 7, 5 respectively. The m-of-n ping
activity rule is set to 3-of-5. The penalty metric for under
pinging in each running interval, br, is set to 0.5γr−1, where
γ is a discount factor of 0.9 and r ∈ R = {1, 2, · · · 56}.
The models (P1) and (P3) are then solved and the ping
control results are shown in Fig. 7. The sum of the detection
performance metrics of the (P1) solution is greater than that
of the (P2) solution by only 0.04 over the network lifetimes.
However, the network lifetime of the (P3) ping control strategy
exceeds that of the (P1) strategy by 15 ping times.

Example (c) represents an operational condition for (P4)

Figure 6. Example (a) – Ping decision comparison between baseline model
(P1) and energy reservation model (P2), where a circle indicates a ping. A
circle at source ID 0 (null ping) represents no ping.

Figure 7. Example (b) – Ping decision comparison between baseline model
(P1) and ping activity model (P3), where a circle indicates a ping. A circle
at source ID 0 (null ping) represents no ping.

with the total number of pings available is less than the
scenario time window of 60 but not as limited as in an
operational condition for (P3). The remaining pings at sources
1 to 4 are 7, 15, 12, 10 respectively. The parameters for energy
reservation and ping activity objectives are the same as in
examples (a) and (b). The models (P1) and (P4) are then
solved and the ping control results are shown in Fig. 8. The
sum of the detection performance metrics of the (P1) solution
is greater than that of the (P2) solution by only 0.02 over the
network lifetimes. However, the network lifetime of the (P4)
ping control strategy exceeds that of the (P1) by 14 ping times.
In addition, the (P4) ping control strategy reserves some ping
energy of all available sources for usage in all subintervals,
while the (P1) strategy exhausts sources 1 and 2 energy before
the middle of the planned scenario time window.
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Figure 8. Example (c) – Ping decision comparison between baseline model
(P1) and complete model (P4), where a circle indicates a ping. A circle at
source ID 0 (null ping) represents no ping.

VI. CONCLUSIONS AND FUTURE WORK

We have presented four integer-linear goal programming
optimization models to address ping control problems in multi-
static sonar networks for various ASW operational scenarios.
We have introduced two additional optimization objectives:
ping energy reservation and maintaining a certain ping activity
level. These are used together with the typically utilized
objective of maximizing a suitable sonar performance metric
to provide robust ping control solutions. Each of the opti-
mization models can be solved using highly efficient linear
programming methods, due to the fact that the solutions to
these models are guaranteed to produce integer solutions,
which has been proved. The efficiency and effectiveness of the
models are illustrated with simulated data representing various
scenarios. Future work will include the integration of the
optimization models with an actual sonar performance model
and multistatic target tracker. This will provide a realistic
simulation capability with which comprehensive evaluation of
the ping control methods for ASW scenarios may be made.
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APPENDIX

Lemma: The matrix

G =

 A 0
B I
0 F

 ,
has the totally unimodular property, given that [A B]T and
F are totally unimodular.

Proof: Let G̃ be an n×n submatrix of G constructed from
submatrices of A,B, I and F which are denoted by Ã, B̃, Ĩ
and F̃ respectively, i.e.

G̃ =

 Ã 0

B̃ Ĩ

0 F̃

 .
Let the dimensions of Ã and F̃ be p× r and q × (n− r),

where p, q, r < n respectively. The dimensions of B̃ and Ĩ
follow accordingly. If p = r (Ã is square), then [Ĩ F̃ ]T is
square and det(G̃) = det(Ã) ·det([Ĩ F̃ ]T ) equals −1,0, or 1.
Similarly, if q = n− r (F̃ is square), then [Ã B̃]T is square
and det(G̃) = det([Ã B̃]T ) · det(F̃ ) equals −1,0, or 1.

If p > r, then q < (n− r), and G̃ can be rewritten as:

G̃ =


[
Ã 0

]
0[

B̃ Ĩ1
0 F̃1

] [
Ĩ2
F̃2

]  .
The submatrices of G̃ are regrouped such that [Ã 0] and
[Ĩ2 F̃2]T are square matrices of dimensions p× p and (n−
p) × (n − p) respectively. It follows that Ĩ1, Ĩ2, F̃1, F̃2 are
submatrices of Ĩ and F̃ with appropriate dimensions. Then,
det(G̃) = det([Ã 0]) · det([Ĩ2 F̃2]T ) = 0.

If q > (n− r), then p < r, and G̃ can be rewritten as:

G̃ =

 [ Ã1

B̃1

] [
Ã2 0

B̃2 Ĩ

]
0

[
0 F̃

]
 .

The submatrices of G̃ are regrouped such that [Ã1 B̃1]T and
[0 F̃ ] are square matrices of dimensions (n − q) × (n −
q) and q × q respectively. It follows that Ã1, Ã2, B̃1, B̃2 are
submatrices of Ã and B̃ with appropriate dimensions. Then,
det(G̃) = det([Ã1 B̃1]T ) · det([0 F̃ ]) = 0. Therefore G is
totally unimodular.

2361


